
ModelArts

Development Environment

Issue 01

Date 2023-11-22

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2023. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.
Address: Huawei Industrial Base

Bantian, Longgang
Shenzhen 518129
People's Republic of China

Website: https://www.huawei.com

Email: support@huawei.com

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. i

https://www.huawei.com
mailto:support@huawei.com

Security Declaration

Vulnerability

Huawei's regulations on product vulnerability management are subject to "Vul. Response Process". For
details about the policy, see the following website:https://www.huawei.com/en/psirt/vul-response-process
For enterprise customers who need to obtain vulnerability information, visit:https://
securitybulletin.huawei.com/enterprise/en/security-advisory

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. ii

https://www.huawei.com/en/psirt/vul-response-process
https://securitybulletin.huawei.com/enterprise/en/security-advisory
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Contents

1 Introduction to DevEnviron...1

2 Application Scenarios... 5

3 Managing Notebook Instances.. 6
3.1 Creating a Notebook Instance.. 6
3.2 Accessing a Notebook Instance... 10
3.3 Starting, Stopping, or Deleting a Notebook Instance.. 11
3.4 Changing a Notebook Instance Image.. 12
3.5 Dynamically Expanding EVS Disk Capacity..12
3.6 Changing the Flavor of a Notebook Instance... 13
3.7 Modifying the SSH Configuration for Notebook... 14
3.8 Viewing All Notebook Instances of an IAM Project.. 15

4 JupyterLab...17
4.1 Operation Process in JupyterLab... 17
4.2 JupyterLab Overview and Common Operations.. 18
4.3 JupyterLab Plug-ins.. 26
4.3.1 Code Parametrization Plug-in... 26
4.4 Using ModelArts SDK.. 29
4.5 Using the Git Plug-in... 29

5 Local IDE.. 35
5.1 Operation Process in a Local IDE.. 35
5.2 Local IDE (PyCharm)... 36
5.2.1 Configuring a Local IDE Accessed Using PyCharm Toolkit... 36
5.2.2 Configuring a Local IDE Manually Accessed Using PyCharm.. 42
5.3 Local IDE (VS Code)... 48
5.3.1 Connecting to a Notebook Instance Through VS Code... 48
5.3.2 Installing VS Code... 48
5.3.3 Connecting to a Notebook Instance Through VS Code with One Click... 49
5.3.4 Connecting to a Notebook Instance Through VS Code Toolkit... 54
5.3.5 Manually Connecting to a Notebook Instance Through VS Code..63
5.3.6 Remotely Debugging in VS Code... 70
5.3.7 Uploading and Downloading a File in VS Code..72
5.4 Configuring a Local IDE Accessed Using SSH... 74

ModelArts
Development Environment Contents

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. iii

6 ModelArts Tool Guide...81
6.1 PyCharm Toolkit.. 81
6.2 Preparations.. 82
6.2.1 Downloading and Installing PyCharm Toolkit...82
6.2.2 Configuring Toolkit Using a YAML File.. 84
6.2.3 Creating Access Keys (AK and SK)...85
6.2.4 Using Access Keys for Login.. 85
6.3 PyCharm Toolkit (Latest Version)... 86
6.3.1 Training a Model.. 86
6.3.1.1 Submitting a Training Job (New Version)..86
6.3.1.2 Stopping a Training Job... 90
6.3.1.3 Viewing Training Logs.. 91
6.4 FAQs.. 91
6.4.1 What Should I Do If an Error Occurs During ToolKit Installation?.. 92
6.4.2 An Error Occurs When You Edit a Credential in PyCharm Toolkit..92
6.4.3 Why Cannot I Start Training?.. 94
6.4.4 What Should I Do If Error "xxx isn't existed in train_version" Occurs When a Training Job Is
Submitted... 94
6.4.5 What Should I Do If an Error Occurs When I Submit a Training Job.. 95
6.4.6 What Should I Do If an Error Occurs During Service Deployment.. 96
6.4.7 How Do I View Error Logs of PyCharm ToolKit?.. 96

7 Uploading and Downloading Data in Notebook... 97
7.1 Uploading Files to JupyterLab.. 97
7.1.1 Scenarios...97
7.1.2 Uploading Files from a Local Path to JupyterLab.. 97
7.1.2.1 Upload Scenarios and Entries.. 98
7.1.2.2 Uploading a Local File Less Than 100 MB to JupyterLab.. 99
7.1.2.3 Uploading a Local File with a Size Ranging from 100 MB to 5 GB to JupyterLab............................... 100
7.1.2.4 Uploading a Local File Larger Than 5 GB to JupyterLab... 103
7.1.3 Cloning an Open-Source Repository in GitHub.. 105
7.1.4 Uploading OBS Files to JupyterLab...106
7.1.5 Uploading Remote Files to JupyterLab..108
7.2 Downloading a File from JupyterLab to a Local Path... 109
7.3 Uploading Data from a Local IDE to a Notebook Instance...111
7.4 Downloading Files from a Notebook Instance to a Local Directory.. 112

ModelArts
Development Environment Contents

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. iv

1 Introduction to DevEnviron

NO TE

This document describes the functions of new-version DevEnviron notebook. Check the
notebook version in the navigation pane on the left. If there is only one Notebook item
under DevEnviron, the notebook is of the new version.

Figure 1-1 New-version notebook

After new-version notebook instances are created, Notebooks New will be displayed on the
Dashboard page.

Figure 1-2 Notebooks New on the Dashboard page

ModelArts
Development Environment 1 Introduction to DevEnviron

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 1

Software development is a process of reducing developer costs and improving
development experience. In AI development, ModelArts is dedicated to improving
AI development experience and simplifying the development process. ModelArts
DevEnviron uses cloud native resources and integrates the development tool chain
to provide better in-cloud AI development experience for AI development,
exploration, and teaching.

ModelArts notebook for seamless in-cloud and on-premises collaboration

● In-cloud JupyterLab, local IDE, and ModelArts plug-ins for remote
development, tailored to your needs

● In-cloud development environment with AI compute resources, cloud storage,
and built-in AI engines

● Custom runtime environment saved as an image for training and inference

Feature 1: Remote development, allowing remote access to notebook from a
local IDE

The notebook of the new version provides remote development. After enabling
remote SSH, you can remotely access the ModelArts notebook development
environment to debug and run code from a local IDE.

Due to limited local resources, developers using a local IDE run and debug code
typically on a CPU or GPU server shared between team members. Building and
maintaining the CPU or GPU server are costly.

ModelArts notebook instances are out of the box with various built-in engines and
flavors for you to select. You can use a dedicated container environment. Only
after simple configurations, you can remotely access the environment to run and
debug code from your local IDE.

Figure 1-3 Remotely accessing notebook from a local IDE

ModelArts
Development Environment 1 Introduction to DevEnviron

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 2

ModelArts notebook can be regarded as an extension of a local development
environment. The operations such as data reading, training, and file saving are the
same as those performed in a local environment.

ModelArts notebook allows you to use in-cloud resources while with local coding
habits unchanged.

A local IDE supports Visual Studio (VS) Code, PyCharm, and SSH. The PyCharm
Toolkit and VS Code Toolkit plug-ins allow you to easily use cloud resources.

Feature 2: One-click image saving to save a development environment
ModelArts notebook of the new version allows you to save a running notebook
instance as a custom image with one click.

When an image is saved, the installed pip dependency package is retained. In
remote development through VS Code, the plug-ins installed on the server are
retained.

Feature 3: Preset images that are out-of-the-box with optimized
configurations and supporting mainstream AI engines

The AI engines and versions preset in each image are fixed. When creating a
notebook instance, specify an AI engine and version, including the chip type.

ModelArts DevEnviron provides a group of preset images. You can use a preset
image to start your notebook instance. After the development in the instance,
submit a training job without any adaptation.

The image versions preset in ModelArts are determined based on user feedback
and version stability. If your development can be carried out using the versions
preset in ModelArts, for example, MindSpore 1.5, use preset images. These images
have been fully verified and have many commonly-used installation packages built
in. They are out-of-the-box, relieving you from configuring the environment.

The images preset in ModelArts DevEnviron include:

● Common preset packages: Common AI engines based on standard Conda,
common data analysis software packages such as Pandas and Numpy, and
common tool software such as CUDA and CUDNN, meet common AI
development requirements.

● Preset Conda environments: A Conda environment and basic Conda Python
(excluding any AI engine) are created for each preset image. The following
figure shows the Conda environment for the preset MindSpore.

ModelArts
Development Environment 1 Introduction to DevEnviron

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 3

Select a Conda environment based on whether the AI engine is used for
debugging.

● Notebook: a web application that enables you to code on the GUI and
combine the code, mathematical equations, and visualized content into a
document.

● JupyterLab plug-ins: enable flavor changing and instance stopping to
improving user experience.

● Remote SSH: allows you to remotely debug a notebook instance from a local
PC.

NO TE

● To simplify operations, ModelArts notebook of the new version does not support
switchover between AI engines in a notebook instance.

● AI engines vary based on regions. For details about the AI engines available in a region,
see the AI engines displayed on the management console.

Feature 4: JupyterLab, an online interactive development and debugging
tool

ModelArts integrates open-source JupyterLab for online interactive development
and debugging. You can use the notebook on the ModelArts management console
to compile and debug code and train models based on the code, without
concerning environment installation or configuration.

JupyterLab is an interactive development environment. It is the next-generation
product of Jupyter Notebook. JupyterLab enables you to compile notebooks,
operate terminals, edit Markdown text, enable interaction, and view CSV files and
images.

ModelArts
Development Environment 1 Introduction to DevEnviron

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 4

2 Application Scenarios

ModelArts provides flexible, open development environments. Select a
development environment based on site requirements.

● In-cloud notebook that is out of the box, relieving you from concerning
environment installation or configuration. For details, see JupyterLab
Overview and Common Operations.

● Local IDE for model development. After enabling remote SSH, you can
remotely access the ModelArts notebook development environment to debug
and run code from a local IDE. The local IDE allows you to use the in-cloud
notebook development environment while with local coding habits
unchanged.
The local IDE supports VS Code, PyCharm, and SSH. Additionally, the PyCharm
Toolkit and VS Code Toolkit are provided for convenient remote access. For
details, see Connecting to a Notebook Instance Through VS Code with
One Click.

ModelArts
Development Environment 2 Application Scenarios

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 5

3 Managing Notebook Instances

Creating a Notebook Instance

Accessing a Notebook Instance

Starting, Stopping, or Deleting a Notebook Instance

Changing a Notebook Instance Image

Dynamically Expanding EVS Disk Capacity

Changing the Flavor of a Notebook Instance

Modifying the SSH Configuration for Notebook

Viewing All Notebook Instances of an IAM Project

3.1 Creating a Notebook Instance
Before developing a model, create a notebook instance and access it for coding.

Context
● Only running notebook instances can be accessed or stopped.
● A maximum of 10 notebook instances can be created under an account.

Procedure
1. Log in to the ModelArts management console. In the navigation pane, choose

Settings and check whether the access authorization has been configured. If
not, configure access authorization. For details, see "Configuring Access
Authorization".

Figure 3-1 Configuring authorization

ModelArts
Development Environment 3 Managing Notebook Instances

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 6

2. Log in to the ModelArts management console. In the left navigation pane,
choose DevEnviron > Notebook to switch to the new-version Notebook
page.

3. Click Create. On the Create Notebook page, configure parameters.

a. Configure basic information of the notebook instance, including its name,
description, and auto stop status. For details, see Table 3-1.

Figure 3-2 Basic information of a notebook instance

Table 3-1 Basic parameters

Paramete
r

Description

Name Name of the notebook instance. Enter 1 to 64 characters.
Only letters, digits, hyphens (-), and underscores (_) are
allowed.

Descriptio
n

Brief description of the notebook instance

Auto Stop Automatically stops the notebook instance at a specified
time. This function is enabled by default. The default value
is 1 hour, indicating that the notebook instance
automatically stops after running for 1 hour.
The options are 1 hour, 2 hours, 4 hours, 6 hours, and
Custom. You can select Custom to specify any integer
from 1 to 24 hours.

b. Configure notebook parameters, such as the image and instance flavor.

For details, see Table 3-2.

ModelArts
Development Environment 3 Managing Notebook Instances

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 7

Table 3-2 Notebook instance parameters

Paramete
r

Description

Image Public and private images are supported.
● Public images are the AI engines built in ModelArts.
● Private images can be created using an instance that is

created using a public image. Custom images have not
been officially released.

An image corresponds to an AI engine. When you select an
image during instance creation, the AI engine is specified
accordingly. Select an image as required. Enter a keyword
of the image name in the search box on the right to
quickly search for the image.
You can change an image on a stopped notebook instance.

Resource
Pool

Select a resource pool as required.

Type Chip type, which can be CPU or GPU.
The chips vary depending on the selected image.

Flavor The flavor of your notebook instance.

Storage Default, EVS, and SFS can be selected.
● Default

If you select this option, the system provides 50 GB of
default free storage for each notebook instance.

● EVS
Set disk space, ranging from 5 GB to 4096 GB, based on
actual usage. The default value is 5 GB.

● SFS, which is supported by dedicated resource pools
only

All the storage paths of Default, EVS, and SFS are
mounted to /home/ma-user/work. All read and write
operations on files in the notebook instance are stored in
this directory, not in OBS.
The data is retained in /home/ma-user/work, even if the
notebook instance is stopped or restarted.
When the notebook instance is deleted, the data is deleted
accordingly.

ModelArts
Development Environment 3 Managing Notebook Instances

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 8

Paramete
r

Description

Remote
SSH

● After you enable this function, you can remotely access
the development environment of the notebook instance
from your local development environment.

● When a notebook instance is stopped, you can update
the SSH configuration on the instance details page.

NOTE
The notebook instances with remote SSH enabled have VS Code
plug-ins (such as Python and Jupyter) and the VS Code server
package pre-installed, which occupy about 1 GB persistent storage
space.

Key Pair Set a key pair after remote SSH is enabled.
Select an existing key pair.
Alternatively, click Create on the right of the text box to
create one on the DEW console. To do so, choose Key Pair
Service > Private Key Pairs and click Create Key Pair.
After a notebook instance is created, you can change the
key pair on the instance details page.
CAUTION

Download the created key pair and properly keep it. When you use
a local IDE to remotely access the notebook development
environment, the key pair is required for authentication.

Whitelist Set a whitelist after remote SSH is enabled. This parameter
is optional.
Add the IP addresses for remotely accessing the notebook
instance to the whitelist, for example, the IP address of
your local PC or the public IP address of the source device.
A maximum of five IP addresses can be added and
separated by commas (,). If the parameter is left blank, all
IP addresses will be allowed for remote SSH access.
If your source device and ModelArts are isolated from each
other in network, obtain the public IP address of your
source device using a mainstream search engine, for
example, by entering "IP address lookup", but not by
running ipconfig or ifconfigip locally.
After a notebook instance is created, you can change the
whitelist IP addresses on the instance details page.

4. Click Next.
5. After confirming the parameter settings, click Submit.

Switch to the notebook instance list. The notebook instance is being created.
It will take several minutes when its status changes to Running. Then, the
notebook instance is created.

6. In the notebook instance list, click the instance name. On the instance details
page that is displayed, view the instance configuration.

ModelArts
Development Environment 3 Managing Notebook Instances

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 9

Figure 3-3 Details about a notebook instance

The SSH configuration of a stopped notebook instance can be modified. Both
the key and whitelist can be modified.
To modify the whitelist, click the modification icon on the right.

3.2 Accessing a Notebook Instance
Access a notebook instance in the Running state for coding.

The methods of accessing notebook instances vary depending on the AI engine
based on which the instance was created.

● Remotely accessed from a local IDE through PyCharm, VS Code, or SSH. For
details, see Connecting to a Notebook Instance Through VS Code Toolkit.

● Accessed online using JupyterLab. For details, see JupyterLab Overview and
Common Operations.

A ModelArts notebook instance is started as user ma-user. The default working
directory of the instance is /home/ma-user.

Create an instance and mount the persistent storage to /home/ma-user/work.

The data stored in the work directory only is retained after the instance is stopped
or restarted. When you use a development environment, store the data for
persistence in /home/ma-user/work.

ModelArts
Development Environment 3 Managing Notebook Instances

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 10

3.3 Starting, Stopping, or Deleting a Notebook
Instance

Starting or Stopping an Instance

Stop the notebook instances that are not needed. You can also restart a stopped
instance.

1. Log in to the ModelArts management console. Choose DevEnviron >
Notebook in the navigation pane on the left. The notebook list of the new
version is displayed.

2. Start or stop the target notebook instance.

– To start a notebook instance, click Start in the Operation column of the
target notebook instance. Only stopped notebook instances can be
started.

– To stop a notebook instance, click Stop in the Operation column of the
target notebook instance. Only running notebook instances can be
stopped.

CA UTION

After a notebook instance is stopped:

● The data stored only in /home/ma-user/work is retained. For
example, the external dependency packages installed in other
directories in the development environment will be deleted.

Deleting an Instance

Delete the notebook instances that are not needed.

1. Log in to the ModelArts management console. Choose DevEnviron >
Notebook in the navigation pane on the left. The notebook list of the new
version is displayed.

2. In the notebook list, click Delete in the Operation column of the target
notebook instance. In the dialog box that is displayed, click OK.

CA UTION

Deleted notebook instances cannot be recovered.

After a notebook instance is deleted, the data stored in the mounted directory
will be deleted, regardless of whether the notebook instance uses the default
storage or an EVS disk for storage.

ModelArts
Development Environment 3 Managing Notebook Instances

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 11

3.4 Changing a Notebook Instance Image
ModelArts allows you to change images on a notebook instance to flexibly adjust
its AI engine.

Constraints

The target notebook instance is stopped.

Procedure
1. Log in to the ModelArts management console and choose DevEnviron >

Notebook in the navigation pane on the left to switch to the notebook page.

2. In the notebook list, click More in the Operation column of the target
notebook instance and select Change Image.

Figure 3-4 Change Image

3. In the Change Image dialog box, select a new image and click OK. After the
modification, you can view the new image on the notebook list page.

3.5 Dynamically Expanding EVS Disk Capacity

Overview

If a notebook instance uses an EVS disk for storage, the disk is mounted to /
home/ma-user/work/ of the notebook container and the disk capacity can be
expanded by up to 200 GB when the instance is running.

Application Scenarios

During notebook development, select a small EVS disk capacity, for example, 5 GB,
when creating a notebook instance because the storage requirements are low at
the initial stage. After the development, a large volume of data must be trained.
Then, expand the disk capacity to cost-effectively meet your service needs.

ModelArts
Development Environment 3 Managing Notebook Instances

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 12

Restrictions
● The target notebook instance must use EVS for storage.
● Up to 100 GB can be expanded at a time. Additionally, the total capacity after

expansion cannot exceed 4096 GB.
● If the original capacity of an EVS disk is 4096 GB, the disk capacity cannot be

expanded.
● After the instance is stopped, the expanded capacity still takes effect.

Procedure
1. Log in to the ModelArts management console. In the left navigation pane,

choose DevEnviron > Notebook to switch to the new-version Notebook
page.

2. Click the name of a running notebook instance. On the instance details page,
click Expansion.

Figure 3-5 Instance details page

3. Set the capacity to be expanded and click OK. Expanding shows that the
capacity expansion is in progress. After the expansion, the displayed storage
capacity is the expanded capacity.

Figure 3-6 Expanding

3.6 Changing the Flavor of a Notebook Instance
ModelArts allows you to flexibly change the node flavor for a notebook instance.

ModelArts
Development Environment 3 Managing Notebook Instances

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 13

Constraints

The target notebook instance is stopped.

Procedure
1. Log in to the ModelArts management console and choose DevEnviron >

Notebook in the navigation pane on the left to switch to the notebook page.

2. In the notebook list, click in the Flavor column of the target notebook
instance and choose the target flavor from the drop-down list.

Figure 3-7 Changing flavor

3.7 Modifying the SSH Configuration for Notebook
ModelArts allows you to modify the SSH configuration for notebook instances.

If a notebook instance is created with remote SSH disabled, you can enable
remote SSH on the notebook details page.

During the creation of a notebook instance, if you set a whitelist for remotely
accessing it, you can change the IP addresses in the whitelist on the notebook
instance details page. You can also change the key pair.

Constraints

The target notebook instance must be stopped.

Changing the Key Pair and the IP Addresses in the Whitelist
1. Log in to the ModelArts management console and choose DevEnviron >

Notebook in the navigation pane on the left to switch to the notebook page.
2. Click the target notebook instance. Enable remote SSH and change the key

pair and whitelist.

NO TE

For manually enabled remote SSH, see Figure 1. After the SSH configuration is
updated, the remote SSH function cannot be disabled.

For remote SSH enabled by default in the selected image, see Figure 2.

ModelArts
Development Environment 3 Managing Notebook Instances

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 14

Figure 3-8 Update SSH Configuration

Figure 3-9 Changing the whitelist and key pair

– Click and choose an existing key pair, or click Create to create a new
key pair.

– For details about how to configure a whitelist, see Changing the Key
Pair and the IP Addresses in the Whitelist. After you change the IP
addresses, the existing links are still valid. After the links are released, the
new links only from the changed IP addresses can be set up.

3.8 Viewing All Notebook Instances of an IAM Project
Any IAM user granted with the listAllNotebooks and listUsers permissions can
click View all on the notebook page to view the instances of all users in the
current IAM project.

NO TE

Users granted with these permissions can also access OBS and SWR of all users in the
current IAM project.

Assigning the listAllNotebooks Permission to an IAM User
1. Log in to the management console as a tenant user, hover the cursor over

your username in the upper right corner, and choose Identity and Access
Management from the drop-down list to switch to the IAM management
console.

2. On the IAM console, choose Permissions > Policies/Roles from the
navigation pane, click Create Custom Policy in the upper right corner, and
create two policies.
Policy 1: Create a policy that allows users to view all notebook instances of an
IAM project, as shown in Figure 1.

ModelArts
Development Environment 3 Managing Notebook Instances

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 15

– Policy Name: Enter a custom policy name, for example, Viewing all
notebook instances.

– Policy View: Select Visual editor.

– Policy Content: Select Allow, ModelArts Service,
modelarts:notebook:listAllNotebooks, and default resources.

Figure 3-10 Creating a custom policy

Policy 2: Create a policy that allows users to view all users of an IAM project.

– Policy Name: Enter a custom policy name, for example, Viewing all
users of the current IAM project.

– Policy View: Select Visual editor.

– Policy Content: Select Allow, Identity and Access Management,
iam:users:listUsers, and default resources.

3. In the navigation pane, choose User Groups. Then, click Authorize in the
Operation column of the target user group. On the Authorize User Group
page, select the custom policies created in 2, and click Next. Then, select the
scope and click OK.

After the configuration, all users in the user group have the permission to
view all notebook instances created by users in the user group.

If no user group is available, create a user group, add users using the user
group management function, and configure authorization. If the target user is
not in a user group, you can add the user to a user group through the user
group management function.

Enabling an IAM User to Start Other User's Notebook Instance

If an IAM user wants to access another IAM user's notebook instance through
remote SSH, they need to update the SSH key pair to their own. Otherwise, error
ModelArts.6786 will be reported. For details about how to update a key pair, see
Modifying the SSH Configuration for Notebook.

ModelArts.6789: Failed to find SSH key pair KeyPair-xxx on the ECS key pair page.
Update the key pair and try again later.

ModelArts
Development Environment 3 Managing Notebook Instances

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 16

4 JupyterLab

Operation Process in JupyterLab

JupyterLab Overview and Common Operations

JupyterLab Plug-ins

Using ModelArts SDK

Using the Git Plug-in

4.1 Operation Process in JupyterLab
ModelArts allows you to access notebook instances online using JupyterLab and
develop AI models based on the PyTorch, TensorFlow, or MindSpore engines. The
following figure shows the operation process.

Figure 4-1 Using JupyterLab to develop and debug code online

1. Create a notebook instance.
On the ModelArts management console, create a notebook instance with a
proper AI engine. For details, see Creating a Notebook Instance.

2. Use JupyterLab to access the notebook instance. For details, see Accessing
JupyterLab.

3. Upload training data and code files to JupyterLab. For details, see Uploading
Files from a Local Path to JupyterLab.

4. Compile and debug code in JupyterLab. For details, see JupyterLab Overview
and Common Operations.

ModelArts
Development Environment 4 JupyterLab

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 17

5. In JupyterLab, call the ModelArts SDK to create a training job for in-cloud
training.
For details, see .

4.2 JupyterLab Overview and Common Operations
JupyterLab is the next-generation web-based interactive development
environment of Jupyter Notebook, enabling you to compile notebooks, operate
terminals, edit Markdown text, enable interaction, and view CSV files and images.

JupyterLab is the future mainstream development environment for developers. It
has the same components as Jupyter Notebook, but offering more flexibility and
powerful functions.

Accessing JupyterLab

To access JupyterLab from a running notebook instance, perform the following
operations:

1. Log in to the ModelArts management console. Choose DevEnviron >
Notebook in the navigation pane on the left. The notebook list of the new
version is displayed.

2. Click Open in the Operation column of a running notebook instance to
access JupyterLab.

Figure 4-2 Accessing a notebook instance

3. The Launcher page is automatically displayed. Perform required operations.
For details, see JupyterLab Documentation.

Figure 4-3 JupyterLab homepage

ModelArts
Development Environment 4 JupyterLab

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 18

https://jupyterlab.readthedocs.io/en/stable/

NO TE

The notebook and console kernels and versions displayed on the Launcher page vary
depending on the AI engine based on which a notebook instance is created. Figure 2
shows an example only. Obtain the notebook and console kernels and versions on the
management console.

– Notebook: Select a kernel for running notebook, for example, TensorFlow
or Python.

– Console: Call the terminal for command control.
– Other: Edit other files.

Creating an IPYNB File in JupyterLab

On the JupyterLab homepage, click a proper AI engine in the Notebook area to
create an IPYNB file.

The AI engines supported by each notebook instance vary depending on the
runtime environment. The following figure is only an example. Select an AI engine
based on site requirements.

Figure 4-4 Selecting an AI engine and creating IPYNB file

The created IPYNB file is displayed in the navigation pane on the left.

Figure 4-5 Created IPYNB file

Creating a Notebook File and Accessing the Console

A console is a Python terminal, which is similar to the native IDE of Python,
displaying the output after a statement is entered.

ModelArts
Development Environment 4 JupyterLab

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 19

On the JupyterLab homepage, click a proper AI engine in the Console area to
create a notebook file.

The AI engines supported by each notebook instance vary depending on the
runtime environment. The following figure is only an example. Select an AI engine
based on site requirements.

Figure 4-6 Selecting an AI engine and creating a console

After the file is created, the console page is displayed.

Figure 4-7 Creating a notebook file (console)

Editing a File in JupyterLab
JupyterLab allows you to open multiple notebook instances or files (such as
HTML, TXT, and Markdown files) in one window and displays them on different
tab pages.

In JupyterLab, you can customize the display of multiple files. In the file display
area on the right, you can drag a file to adjust its position. Multiple files can be
concurrently displayed.

ModelArts
Development Environment 4 JupyterLab

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 20

Figure 4-8 Customized display of multiple files

When writing code in a notebook instance, you can create multiple views of a file
to synchronously edit the file and view execution results in real time.

To open multiple views, open an IPYNB file and choose File > New View for
Notebook.

Figure 4-9 Multiple views of a file

Before coding in the code area of an IPYNB file in JupyterLab, add an exclamation
mark (!) before the code.

For example, install an external library Shapely.

!pip install Shapely

For example, obtain PythonPath.

!echo $PYTHONPATH

ModelArts
Development Environment 4 JupyterLab

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 21

Figure 4-10 Running code

Renewing or Automatically Stopping a Notebook Instance
If you enable auto stop when you created or started a notebook instance, the
remaining duration for stopping the instance is displayed in the upper right corner
of JupyterLab. You can click the time for renewal.

Figure 4-11 Remaining duration

Figure 4-12 Renewing an instance

ModelArts
Development Environment 4 JupyterLab

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 22

Common JupyterLab Buttons and Plug-ins

Figure 4-13 Common JupyterLab buttons and plug-ins

Table 4-1 JupyterLab buttons

Button Description

Open the Launcher page, on which you can quickly create
notebook instances, consoles, or other files.

Create a folder.

Upload files.

Refresh the file directory.

Git plug-in, which can be used to access the GitHub code library
associated with the notebook instance.

Table 4-2 JupyterLab plug-ins

Plug-in Description

List files. Click this button to show all files in the notebook instance.

Display the terminals and kernels that are running in the current
instance.

Git plug-in, which can be used to quickly access the GitHub code
library.

Property inspector.

ModelArts
Development Environment 4 JupyterLab

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 23

Plug-in Description

Show the document organization.

Figure 4-14 Buttons in the navigation bar

Table 4-3 Buttons in the navigation bar

Button Description

File Actions related to files and directories, such as creating, closing, or
saving notebooks.

Edit Actions related to editing documents and other activities in the
IPYNB file, such as undoing, redoing, or cutting cells.

View Actions that alter the appearance of JupyterLab, such as showing
the bar or expanding code.

Run Actions for running code in different activities such as notebooks
and code consoles.

Kernel Actions for managing kernels, such as interrupting, restarting, or
shutting down a kernel.

Git Actions on the Git plug-in, which can be used to quickly access the
GitHub code library.

Tabs A list of the open documents and activities in the dock panel.

Settings Common settings and an advanced settings editor.

Help A list of JupyterLab and kernel help links.

Figure 4-15 Buttons in the menu bar of an IPYNB file

Table 4-4 Buttons in the menu bar of an IPYNB file

Button Description

Save a file.

ModelArts
Development Environment 4 JupyterLab

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 24

Button Description

Add a new cell.

Cut the selected cell.

Copy the selected cell.

Paste the selected cell.

Execute the selected cell.

Terminate a kernel.

Restart a kernel.

Restart a kernel and run all code of the current notebook again.

There are four options in the drop-down list:
Code (Python code), Markdown (Markdown code, typically used
for comments), Raw (a conversion tool), and - (not modified)

View historical code versions.

Git plug-in. The gray button indicates that the plug-in is unavailable
in the current region.

Instance flavor.

Kernel for you to select.

Code running status. indicates the code is being executed.

Monitoring Resources
To obtain resource usage, select Resource Monitor in the right pane. The CPU
usage and memory usage can be viewed.

ModelArts
Development Environment 4 JupyterLab

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 25

Figure 4-16 Resource usage

4.3 JupyterLab Plug-ins

4.3.1 Code Parametrization Plug-in
The code parametrization plug-in simplifies notebook cases. You can quickly adjust
parameters and train models based on notebook cases without complex code. This
plug-in can be used to customize notebook cases for competitions and learning.

Use Guide
● The Add Form and Edit Form buttons are available only to the shortcut

menu of code cells.

Figure 4-17 Viewing a code cell

● After opening new code, add a form before editing it.

ModelArts
Development Environment 4 JupyterLab

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 26

Figure 4-18 Shortcut menu of code cells

Add Form

If you click Add Form, a code cell will be split into the code and form edit area.
Click Edit on the right of the form to change the default title.

Figure 4-19 Two edit areas

Edit Form

If you click Edit Form, four sub-options will be displayed: Add new form field,
Hide code, Hide form, and Show All.

● You can set the form field type to dropdown, input, and slider. See Figure 4.
Each time a field is added, the corresponding variable is added to the code
and form areas. If a value in the form area is changed, the corresponding
variable in the code area is also changed.

NO TE

When creating a dropdown form, click ADD Item and add at least two items. See
Figure 5.

Figure 4-20 Form style of dropdown, input, and slider

ModelArts
Development Environment 4 JupyterLab

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 27

Figure 4-21 Creating a dropdown form

Figure 4-22 Deleting a form

– If the form field type is set to dropdown, the supported variable types
are raw and string.

– If the form field type is set to input, the supported variable types are
boolean, date, integer, number, raw, and string.

– If the form field type is set to slider, the minimum value, maximum
value, and step can be set.

● If you click Hide code, the code area will be hidden.

ModelArts
Development Environment 4 JupyterLab

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 28

● If you click Hide form, the form area will be hidden.
● If you click Show All, both the code and form areas will be displayed.

4.4 Using ModelArts SDK
Notebook instances allow you to use ModelArts SDK to manage OBS, training
jobs, models, and real-time services.

Your notebook instances have automatically obtained your AK/SK for
authentication and the region. Therefore, SDK sessions are automatically
authenticated.

Example Code
● Create a training job.

from modelarts.session import Session
from modelarts.estimator import Estimator
session = Session()
estimator = Estimator(
 modelarts_session=session,
 framework_type='PyTorch', # AI engine name
 framework_version='PyTorch-1.0.0-python3.6', # AI engine version
 code_dir='/obs-bucket-name/src/', # Training script directory
 boot_file='/obs-bucket-name/src/pytorch_sentiment.py', # Training boot script
directory
 log_url='/obs-bucket-name/log/', # Training log directory
 hyperparameters=[
 {"label":"classes",
 "value": "10"},
 {"label":"lr",
 "value": "0.001"}
],
 output_path='/obs-bucket-name/output/', # Training output directory
 train_instance_type='modelarts.vm.gpu.p100', # Training environment
specifications
 train_instance_count=1, # Number of training nodes
 job_description='pytorch-sentiment with ModelArts SDK') # Training job description
job_instance = estimator.fit(inputs='/obs-bucket-name/data/train/', wait=False,
job_name='my_training_job')

● Obtain a model list.
from modelarts.session import Session
from modelarts.model import Model
session = Session()
model_list_resp = Model.get_model_list(session, model_status="published", model_name="digit",
order="desc")

● Obtain service details.
from modelarts.session import Session
from modelarts.model import Predictor
session = Session()
predictor_instance = Predictor(session, service_id="input your service_id")
predictor_info_resp = predictor_instance.get_service_info()

4.5 Using the Git Plug-in
In JupyterLab, you can use the Git plug-in to clone the GitHub open-source code
repository, quickly view and edit data, and submit the modified data.

Prerequisites
The notebook instance is running.

ModelArts
Development Environment 4 JupyterLab

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 29

Starting the Git Plug-in of JupyterLab

In the notebook instance list, locate the target instance and click Open in the
Operation column to go to the JupyterLab page.

Figure 1 shows the Git plug-in of JupyterLab.

Figure 4-23 Git plug-in

Cloning a GitHub Open-Source Code Repository

Alternatively, click the icon shown in the following figure to clone the GitHub
open-source code repository.

Viewing a Code Repository

In the list under Name, double-click the folder you want to use and click the Git
plug-in icon on the left to access the code repository corresponding to the folder.

ModelArts
Development Environment 4 JupyterLab

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 30

Figure 4-24 Opening the folder and starting the Git plug-in

You can view the information current code repository, such as the repository
name, branch, and historical submission records.

Figure 4-25 Viewing a code repository

ModelArts
Development Environment 4 JupyterLab

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 31

NO TE

By default, the Git plug-in clones the master branch. To switch another branch, click
Current Branch to expand all branches and click the target branch name.

Viewing Modifications
If a file in the code repository has been modified, you can view the modified file
under Changed on the Changes tab page. Click Diff this file on the right of the
file name to view the modifications.

Figure 4-26 Viewing modifications

Committing Modifications
After confirming that the modifications are correct, click Stage this change on the
right of the file name, which is equivalent to running the git add command. The
file enters the Staged state. Enter the message to be committed in the lower left
corner and click Commit that is equivalent to running the git commit command.

ModelArts
Development Environment 4 JupyterLab

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 32

Figure 4-27 Committing modifications

On the History tab page, view the committing status.

Figure 4-28 Checking whether the committing is successful

Click the push icon, which is equivalent to running the git push command, to
push the code to the GitHub repository. After the pushing is successful, the
message "Successfully completed" is displayed. If the token used for OAuth
authentication has expired, a dialog box is displayed asking you to enter the user
token or account information. Enter the information as prompted.

Figure 4-29 Pushing code to the GitHub repository

ModelArts
Development Environment 4 JupyterLab

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 33

After the preceding operations are complete, on the History tab page of the
JupyterLab Git plug-in page, you can see that origin/HEAD and origin/master
point to the latest push. In addition, you can find the corresponding information in
the committing records of the GitHub repository.

ModelArts
Development Environment 4 JupyterLab

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 34

5 Local IDE

Operation Process in a Local IDE

Local IDE (PyCharm)

Local IDE (VS Code)

Configuring a Local IDE Accessed Using SSH

5.1 Operation Process in a Local IDE
ModelArts allows you to remotely access notebook instances from a local IDE to
develop AI models based on PyTorch, TensorFlow, or MindSpore. The following
figure shows the operation process.

1. Configure a local IDE.

Configure a local IDE on your PC.

2. Create a notebook instance.

On the ModelArts management console, create a notebook instance with a
proper AI engine and remote SSH enabled.

3. Use the local IDE to remotely access ModelArts DevEnviron.

4. Upload data and code to the development environment.

– Copy the code to the local IDE, which will automatically synchronize the
code to the in-cloud development environment.

– If the data is less than or equal to 500 MB, directly copy the data to the
local IDE.

– If the data is larger than 500 MB, upload it to OBS and then to the EVS
disk.

5. Upload the training script and dataset to the OBS directory.

6. Submit a training job.

Perform this operation on the ModelArts management console.

– Submit a training job in the local IDE.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 35

5.2 Local IDE (PyCharm)

5.2.1 Configuring a Local IDE Accessed Using PyCharm Toolkit
ModelArts provides the PyCharm plug-in PyCharm Toolkit for you to remotely
access a notebook instance through SSH.

Prerequisites

PyCharm professional 2019.2 or later has been installed locally. Remote SSH
applies only to the PyCharm professional edition.

Step 1 Download and Install PyCharm Toolkit

The PyCharm Toolkit package has been integrated into the ModelArts
management console. Download and install PyCharm Toolkit.

For details, see Downloading and Installing PyCharm Toolkit.

Step 2 Log In to PyCharm Toolkit

and so PyCharm Toolkit can exchange data with ModelArts.

Obtain an access key (Creating Access Keys (AK and SK)) and use the key for
login authentication (Using Access Keys for Login) so the local IDE can exchange
data with the in-cloud environment.

Step 3 Create a Notebook Instance

Create a notebook instance with remote SSH enabled and whitelist configured.
Ensure that the instance is running. For details, see Creating a Notebook
Instance.

Step 4 Automatically Configure PyCharm Toolkit
1. In the local PyCharm development environment, choose ModelArts >

Connect To Remote > Remote Config and configure PyCharm Toolkit.

Figure 5-1 Remotely connecting to PyCharm Toolkit

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 36

NO TE

If Connect To Remote is unavailable, create a notebook instance with remote SSH
enabled. For details, see Creating a Notebook Instance.
If the fault persists, check whether the PyCharm Toolkit version is the latest one. If
not, download the latest version.
Before downloading PyCharm Toolkit, clear the browser cache. If PyCharm Toolkit of
an earlier version has been downloaded, the browser cache may lead to the failure in
downloading a new version.

2. All notebook instances with remote SSH enabled under the account are
displayed. Choose the target instance from the drop-down list.

Figure 5-2 Notebook list

– KeyPair: Select the locally stored key pair of the notebook instance for
authentication. The key pair created during the notebook instance
creation is saved in your browser's default downloads folder.

– PathMappings: Synchronization directory for the local IDE project and
notebook, which defaults to /home/ma-user/work/Project name and is
adjustable.

3. Click Apply. After the configuration is complete, restart the IDE for the
configuration to take effect.
After the restart, it takes about 20 minutes to update the Python interpreter
for the first time.

Step 5 Access a Notebook Instance Through PyCharm Toolkit
Click the notebook instance name and connect it to the local IDE as prompted.
The connection is kept for 4 hours by default.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 37

Figure 5-3 Starting the connection

To interrupt the connection, click the notebook name and disconnect it from the
local IDE as prompted.

Figure 5-4 Interrupting the connection

Step 6 Upload Local Files to the Notebook Instance
Code in a local file can be copied to the local IDE, which will automatically
synchronize the code to the in-cloud development environment.

Initial synchronization

In the Project directory of the local IDE, right-click Deployment and choose
Upload to Notebook name from the shortcut menu to upload the local project file
to the specified notebook instance.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 38

Figure 5-5 Synchronizing local data to a notebook instance

Follow-up synchronization

After modifying the code, press Ctrl+S to save it. The local IDE will automatically
synchronize the modification to the specified notebook instance.

After PyCharm Toolkit is installed, Automatic Upload is automatically enabled in
the local IDE for automatically uploading the files in the local directory to the
target notebook instance. If Automatic Upload is not enabled, enable it by
referring to the following figure.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 39

Figure 5-6 Enabling Automatic Upload

Step 7 Remotely Debug the Code

Click Interpreter in the lower right corner of the local IDE and select a notebook
Python interpreter.

Figure 5-7 Selecting a Python interpreter

Run the code in the notebook instance. The logs are displayed locally.

Figure 5-8 Runtime logs

Click Run/Debug Configurations in the upper right corner of the local IDE to set
runtime parameters.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 40

Figure 5-9 Setting runtime parameters (1)

Select the Python interpreter that remotely connects to the target notebook
instance.

Figure 5-10 Setting runtime parameters (2)

To debug code, set breakpoints and run the program in debug mode.

Figure 5-11 Running the program in debug mode

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 41

In debug mode, the code execution is suspended in the specified line, and you can
obtain variable values.

Figure 5-12 Viewing variable values in debug mode

5.2.2 Configuring a Local IDE Manually Accessed Using
PyCharm

A local IDE supports PyCharm and VS Code. You can use PyCharm or VS Code to
remotely connect the local IDE to the target notebook instance on ModelArts for
running and debugging code.

This section describes how to use PyCharm to access a notebook instance.

Prerequisites
● PyCharm professional 2019.2 or later has been installed locally. The PyCharm

professional edition is available because remote SSH applies only to the
professional edition.

● A notebook instance has been created with remote SSH enabled. Ensure that
the instance is running. For details, see Creating a Notebook Instance.

● The address and port number of the development environment are available.
To obtain this information, go to the notebook instance details page.

Figure 5-13 Instance details page

● The key pair is available.

A key pair is automatically downloaded after you create it. Securely store your
key pair. If an existing key pair is lost, create a new one.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 42

Step 1 Configure SSH
1. In your local PyCharm development environment, choose File > Settings >

Tools > SSH Configurations and click + to add an SSH configuration.
– Host: address for accessing the cloud development environment. Obtain

the address on the page providing detailed information of the target
notebook instance .

– Port: port number for accessing the cloud development environment.
Obtain the port number on the page providing detailed information of
the target notebook instance.

– User name: consistently set to ma-user.
– Authentication type: key pair
– Private key file: locally stored private key file of the cloud development

environment. It is the key pair file automatically downloaded when you
created the notebook instance.

2. Click to rename the connection. Then, click OK.
3. After the configuration is complete, click Test Connection to test the

connectivity.
4. Select Yes. If "Successfully connected" is displayed, the network is accessible.

Then, click OK.
5. Click OK at the bottom to save the configuration.

Figure 5-14 Configuring SSH

Step 2 Obtain the Path to the Virtual Environment Built in the Development
Environment

1. Choose Tools > Start SSH Session to access the cloud development
environment.

2. Run the following command to view the Python virtual environments built in
the current environment in the README file in /home/ma-user/:
cat /home/ma-user/README

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 43

3. Run the source command to switch to a specific Python environment.

4. Run which python to obtain the Python path and copy it for configuring the
Python interpreter on the cloud.

Figure 5-15 Obtaining the path to the virtual environment built in the
development environment

Step 3 Configure a Python Interpreter
1. Choose File > Settings > Project: Python project > Python Interpreter. Then,

click and Add to add an interpreter.

2. Select Existing server configuration, choose the SSH configuration from the
drop-down list, and click Next.

3. Configure the Python interpreter.

– Interpreter: Enter the Python path copied in step 1, for example, /
home/ma-user/anaconda3/envs/Pytorch-1.0.0/bin/python.

If the path is ~/anaconda3/envs/Pytorch-1.0.0/bin/python, replace ~
with /home/ma-user.

– Sync folders: Set this parameter to a directory in the cloud development
environment for synchronizing local project directory files. A directory in /
home/ma-user is recommended, for example, /home/ma-user/work/
projects, because other directories may be prohibited from accessing.

4. Click ! on the right and select Automatically upload so that the locally
modified file can be automatically uploaded to the container.

5. Click Finish.

The local project file has been automatically uploaded to the cloud
environment. Each time a local file is modified, the modification is
automatically synchronized to the cloud environment.

In the lower right corner, the current interpreter is displayed as a remote
interpreter.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 44

Figure 5-16 Configuring a Python interpreter

Step 4 Install the Dependent Library for the Cloud Environment
After accessing the development environment, you can use different virtual
environments, such as TensorFlow and PyTorch. However, in actual development,
you need to install dependency packages. Then, you can access the environment
through the terminal to perform operations.

Choose Tools > Start SSH Session and select the configured development
environment. Run the pip install command to install the required dependency
packages.

Step 5 Debug Code in the Development Environment
You have accessed the cloud development environment. Then, you can write,
debug, and run the code in the local PyCharm. The code is actually executed in
the cloud development environment, and the Ascend AI resources on the cloud are
used. In this way, you compile and modify code locally and run the code in the
cloud.

Run the code in the local IDE. The logs can be displayed locally.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 45

Figure 5-17 Debugging code

Click Run/Debug Configurations in the upper right corner of the local IDE to set
runtime parameters.

Figure 5-18 Setting runtime parameters

To debug code, set breakpoints and run the program in debug mode.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 46

Figure 5-19 Code breakpoint

Figure 5-20 Debugging in debug mode

In debug mode, the code execution is suspended in the specified line, and you can
obtain variable values.

Figure 5-21 Debug mode

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 47

Before debugging code in debug mode, ensure that the local code is the same as
the cloud code. If they are different, the line where a breakpoint is added locally
may be different from the line of the cloud code, leading to errors.

When configuring a Python interpreter in the cloud development environment,
you are advised to select Automatically upload so that any local file modification
can be automatically uploaded to the cloud. If you do not select Automatically
upload, manually upload the directory or code after you modify the local code.
For details, see Step 6 Upload Local Files to the Notebook Instance.

5.3 Local IDE (VS Code)

5.3.1 Connecting to a Notebook Instance Through VS Code
After creating a notebook instance with remote SSH enabled, you can use VS Code
to access the development environment in any of the following ways:

● Connecting to a Notebook Instance Through VS Code with One Click
(Recommended)
In this mode, click Access VSCode in the Operation column of a notebook
instance on the ModelArts console to open VS Code and connect to the
instance.

● Connecting to a Notebook Instance Through VS Code Toolkit
(Recommended)
In this mode, log in to the ModelArts VS Code Toolkit plug-in and use it to
connect to an instance.

● Manually Connecting to a Notebook Instance Through VS Code
In this mode, use the VS Code Remote-SSH plug-in to configure connection
information and connect to an instance.

5.3.2 Installing VS Code
Download URL:

● URL for Windows: https://update.code.visualstudio.com/1.57.1/win32-x64-
user/stable

NO TE

Linux system users must install VS Code as a non-root user.

● URL for other OSs: https://code.visualstudio.com/updates/v1_57

Figure 5-22 VS Code download URL

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 48

https://update.code.visualstudio.com/1.57.1/win32-x64-user/stable
https://update.code.visualstudio.com/1.57.1/win32-x64-user/stable
https://code.visualstudio.com/updates/v1_57

VS Code version requirements:

You are advised to use VS Code 1.57.1 or the latest version for remote connection.

Figure 5-23 VS Code installation guide in Linux

5.3.3 Connecting to a Notebook Instance Through VS Code
with One Click

Prerequisites
● The notebook instance with remote SSH enabled is running. For details, see

Creating a Notebook Instance.
● You have downloaded the key file of the instance to a following local

directory or its subdirectory based on your operating system:
Windows: C:\Users\{{user}}
Mac or Linux: Users/{{user}}

Procedure

Step 1 Log in to the ModelArts management console. In the left navigation pane, choose
DevEnviron > Notebook to switch to the new-version Notebook page.

Step 2 In the Operation column of a running instance, choose More > Access VS Code.

Figure 5-24 Accessing VS Code

Step 3 If you have installed VS Code, click Open. The Visual Studio Code page is
displayed.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 49

Figure 5-25 Opening Visual Studio Code

If VS Code has not been installed, click Windows or other OS as required to
download and install VS Code. For details about how to install VS Code, see
Installing VS Code.

Figure 5-26 Downloading and Installing VS Code

Step 4 If the ModelArts VS Code plug-in has not been installed, click Install and Open. If
you have installed the plug-in, perform Step 5.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 50

Figure 5-27 Installing the VS Code plug-in

The installation takes about 1 to 2 minutes. After the installation is complete, a
dialog box is displayed in the lower right corner. Then, click Reload Window and
Open.

NO TE

This section uses VS Code 1.57.1 as an example. The Reload Window and Open dialog box
may not be displayed when you install other versions of VS Code. In this case, perform Step
5.

Figure 5-28 Reload Window and Open

In the displayed dialog box, select Don't ask again for this extension and click
Open.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 51

Step 5 Remotely connect to a notebook instance.
● Before the remote connection is executed, the system automatically searches

for the key file. If the key is found, a new window will be displayed and the
system connects to the instance. In this case, you do not need to select the
key.

Figure 5-29 Remotely connecting to a notebook instance

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 52

● If the key file is not found, a dialog box is displayed. Select the correct key as
prompted.

Figure 5-30 Selecting a key file

● If an incorrect key is selected, a message will be displayed. Then, select the
correct key as prompted.

Figure 5-31 Selecting the correct key file

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 53

When the information shown in the following figure is displayed, the instance
is accessed.

Figure 5-32 Connection successful

The following error message indicates that accessing the instance failed. In
this case, close the dialog box and view the output logs in the OUTPUT
window. Then, check the FAQs and locate the cause.

Figure 5-33 Connection failed

----End

5.3.4 Connecting to a Notebook Instance Through VS Code
Toolkit

This section describes how to use the ModelArts VS Code Toolkit plug-in to
remotely connect to a notebook instance.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 54

https://support.huaweicloud.com/eu/modelarts_faq/modelarts_05_0513.html

Prerequisites
You have downloaded and installed VS Code. For details, see Installing VS Code.

Step 1 Install the VS Code Plug-in
1. Search for ModelArts in the EXTENSIONS text box and click Install..

Figure 5-34 Install the VS Code Plug-in

2. Wait for about 1 to 2 minutes.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 55

Figure 5-35 Installation process

3. After the installation is complete, check the message displayed in the lower

right corner. If the ModelArts icon and remote SSH icon are
displayed in the navigation pane on the left, the VS Code plug-in is installed.

Figure 5-36 Installation completion message

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 56

Figure 5-37 Installation completed

Network issues may cause an installation failure. If this occurs, proceed with
follow-up operations. After 1 in Step 5 Connect to the Notebook Instance is
performed, the system will automatically display a dialog box shown in the
following figure. In this case, click Install and Reload.

Figure 5-38 Reconnecting remote SSH

Step2 Adding More Regions
1. Click Get More Region.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 57

https://gitee.com/ModelArts/ModelArts-Lab/tree/master/tools/dev-tools/dev-config-template

2. Go to the folder corresponding to your region. (View the region information in
the console address.)

3. Click the YAML file, right-click Raw, and choose Copy link address from the
shortcut menu to copy the file address.

CA UTION

Obtain the host information.
The plug-in must be used by calling APIs. The API domain names of some
HCSO regions are not registered. You need to configure the corresponding IP
addresses and API domain names in the hosts file on the local PC. The hosts
file is generally stored in C:\Windows\System32\drivers\etc.

4. Import the configuration file in the VS Code plug-in.

Open the VS Code plug-in. Click , choose Import Region Profile, click
From url in the lower right corner, enter the URL of the YAML configuration
file, and press Enter.

5. Log in to the VS Code plug-in to use more functions.
After the configuration file is imported, the region changes to your region.
Enter the account name and AK/SK to log in to the plug-in.

Note: If the configuration file cannot be downloaded from the URL
copied in Gitee, perform the following steps:

a. Right-click Raw and choose Save link as from the shortcut menu to save
the file to the local PC.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 58

b. Open the VS Code plug-in. Click and choose Import Region Profile.
In the dialog box that is displayed in the lower right corner, click From
local file and select the downloaded ModelArts-region-profile.yaml file.

Step 3 Log In to the VS Code Plug-in

1. In the local VS Code development environment, click and User Settings,
and configure the login information.

Figure 5-39 Logging in to the plug-in

Enter the login information and click Log In.
– Name: Custom username, which is displayed only on the VS Code page

and is not associated with any account.
– AK and SK: Access key pair. To create a key pair, log in to Huawei Cloud,

choose My Credentials > API Credentials > Access Keys, and click
Create Access Key.

– Region: must be the same as that of the notebook instance to be
remotely connected. Otherwise, the connection will fail.

Alternatively, you can switch the login mode, enter your login information,
and press Ctrl+S to save the information.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 59

Figure 5-40 Configuring login information

2. After the login, check the notebook instance list.

Figure 5-41 Login succeeded

Step 4 Create a Notebook Instance

CA UTION

● Create a notebook instance with remote SSH enabled, and download the key
file to either of the following directories based on your OS:
Windows: C:\Users\{{user}}
Mac or Linux: Users/{{user}}

● A key pair is automatically downloaded after you create it. Securely store your
key pair. If an existing key pair is lost, create a new one.

Create a notebook instance with remote SSH enabled. For details, see Creating a
Notebook Instance.

Step 5 Connect to the Notebook Instance
1. In the local VS Code development environment, right-click the instance name

and choose Connect to Instance from the shortcut menu to start and
connect to the notebook instance.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 60

The notebook instance can either be running or stopped. If it is stopped, the
VS Code plug-in starts the instance and then connects to it.

Figure 5-42 Connecting to a notebook instance

Alternatively, click the instance name. On the instance details page, click
Connect. Then, the system automatically starts and connects to the notebook
instance.

Figure 5-43 Viewing details about a notebook instance

2. When you connect to a notebook instance for the first time, the system
prompts you in the lower right corner to configure the key file. In this case,
select the local .pem key file and click OK.

Figure 5-44 Configuring the key file

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 61

3. Wait for about 1 to 2 minutes until the notebook instance is accessed. After
information similar to the following is displayed in the lower left corner of the
VS Code environment, the connection is succeeded.

Figure 5-45 Connection succeeded

Related Operations
For details about uninstalling the VS Code plug-in, see Figure 13.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 62

Figure 5-46 Step 1 Download the VS Code Plug-in

5.3.5 Manually Connecting to a Notebook Instance Through
VS Code

A local IDE supports PyCharm and VS Code. You can use PyCharm or VS Code to
remotely connect the local IDE to the target notebook instance on ModelArts for
running and debugging code.

This section describes how to use VS Code to access a notebook instance.

Prerequisites
● You have downloaded and installed VS Code. For details, see Installing VS

Code.
● Python has been installed on your local PC or server. For details, see VS Code

official documentation.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 63

https://code.visualstudio.com/docs/python/python-tutorial#_prerequisites
https://code.visualstudio.com/docs/python/python-tutorial#_prerequisites

● A notebook instance has been created with remote SSH enabled. Ensure that
the instance is running. For details, see Creating a Notebook Instance.

● The address and port number of the development environment are available.
To obtain the information, go to the notebook instance details page.

Figure 5-47 Instance details page

● The key pair is available.
A key pair is automatically downloaded after you create it. Securely store your
key pair. If an existing key pair is lost, create a new one.

Step 1 Add the Remote-SSH Plug-in

In the local VS Code development environment, click , enter SSH in the
search box, and click install of the Remote-SSH plug-in to install the plug-in.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 64

Figure 5-48 Adding the Remote-SSH plug-in

Step 2 Configure SSH

1. In the local VS Code development environment, click on the left, select

SSH Targets from the drop-down list box, and click . The SSH
configuration file path is displayed.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 65

Figure 5-49 Configuring SSH Targets

2. Click the SSH configuration path and configure SSH.

Figure 5-50 SSH configuration file path

HOST remote-dev
 hostname <instance connection host>
 port <instance connection port>
 user ma-user
 IdentityFile ~/.ssh/test.pem

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 66

 UserKnownHostsFile=/dev/null
 StrictHostKeyChecking no

– HOST: name of the cloud development environment
– HostName: address for accessing the cloud development environment.

Obtain the address on the page providing detailed information of the
target notebook instance.

– Port: port number for accessing the cloud development environment.
Obtain the port number on the page providing detailed information of
the target notebook instance.

– user: ma-user
– IdentityFile: locally stored private key file of the cloud development

environment. It is the key pair file in Prerequisites.
3. Choose File > Preference > Settings > Extensions > Remote-SSH. On the

Remote Platform page, click Add Item, set Item and Value, and click OK.

Figure 5-51 Configuring Remote Platform

Item: host name configured in SSH configuration
Value: remote development environment platform

4. Go back to the SSH Targets page and click on the right. Then, click the
development environment name to open the development environment.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 67

Figure 5-52 Opening the development environment

After the page shown in the following figure is displayed, the connection is
succeeded.

Figure 5-53 Remote connection succeeded

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 68

Figure 5-54 Complete configuration example

Step 3 Install the Python Plug-in in the Cloud Development Environment

On the displayed VS Code page, click on the left, enter Python in the
search box, and click Install.

Figure 5-55 Installing the Python plug-in in the cloud development environment

If the Python plug-in fails to be installed on the cloud, install it using an offline
package.

Step 4 Install the Dependent Library for the Cloud Environment

After accessing the container environment, you can use different virtual
environments, such as TensorFlow and PyTorch. However, in actual development,
you need to install dependency packages. Then, you can access the environment
through the terminal to perform operations.

1. In VS Code, press Ctrl+Shift+P.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 69

2. Search for Python: Select Interpreter and select the target Python.
3. Choose Terminal > New Terminal. The CLI of the remote container is

displayed.
4. Run the following command to install the dependency package:

pip install spacy

5.3.6 Remotely Debugging in VS Code

Prerequisites
A notebook instance has been accessed through VS Code.

Step 1 Upload Local Code to the Cloud Development Environment
1. On the VS Code page, choose File > Open Folder to access the cloud path.

Figure 5-56 Open Folder

2. Select a path and click OK.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 70

Figure 5-57 Selecting a file path

3. In the displayed directory structure on the left of the IDE, drag the code and
files you want to upload to the corresponding folders. Then, the code is
uploaded to the cloud development environment.

Step 2 Debug Code Remotely

Open the code file to be debugged in VS Code. Before running the code, click the
default Python version in the lower left part and select a version as required.

Figure 5-58 Selecting a Python version

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 71

● Click the execution button to run the code. The code output is shown on the
TERMINAL tab page.

● If a training job takes a long time to execute, run the job at the backend
through the nohup command. This prevents the disconnection of an SSH
session or a network failure from affecting job execution. The following shows
an example nohup command:
nohup your_train_job.sh > output.log 2>&1 & tail -f output.log

● To debug the code, perform the following operations:

a. Choose Run > Run and Debug on the left.
b. Select the default Python code file.
c. Click on the left of the code to set breakpoints.
d. Debug the code according to the debug procedure which is displayed

above the code, and the debug information is displayed on the left of the
page.

5.3.7 Uploading and Downloading a File in VS Code

Uploading Data from a Local IDE to a Notebook Instance
If the data is less than or equal to 500 MB, directly copy the data to the local IDE.

If the data is larger than 500 MB, upload the code to OBS and then to the EVS
disk associated with the target notebook instance.

Figure 5-59 Uploading data to a notebook instance through OBS

Procedure
Upload data to OBS. . Alternatively, use ModelArts SDK on a local VS Code
terminal.

The following shows how to enable Terminal in the VS Code environment.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 72

Figure 5-60 Enabling Terminal in the local VS Code environment

The following shows how to use ModelArts SDK on a local VS Code terminal to
upload a local file to OBS:

Enter python and press Enter to enter the Python environment.

Then, upload the file to OBS by referring to Uploading a File to OBS.

Figure 5-61 Enabling Terminal in the remote VS Code environment

2. The following shows how to use ModelArts SDK in the terminal of the remote
VS Code environment to download files from OBS to a development environment:

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 73

Manually access the development environment.
cat /home/ma-user/README
Select the source environment.
source /home/ma-user/miniconda3/bin/activate MindSpore-python3.7-aarch64
Enter python and press Enter to enter the Python environment.

Then, upload the file to OBS by referring to Uploading a File to OBS.

Downloading Files from a Notebook Instance to a Local Directory
Files created in Notebook can be downloaded to a local path. The operations for
downloading a file are the same, regardless of whether the created notebook
instance uses the default or EVS storage. In the Project directory of the local IDE,
right-click the Notebook2.0 project and choose Download from the shortcut
menu to download the project file to the local PC.

Figure 5-62 Downloading files from a notebook instance to a local directory in VS
Code

5.4 Configuring a Local IDE Accessed Using SSH
This section describes how to use PuTTY to remotely log in to a notebook instance
on the cloud in the Windows environment.

Prerequisites
● You have created a notebook instance with remote SSH enabled and whitelist

configured. Ensure that the instance is running. For details, see Creating a
Notebook Instance.

● The address and port number of the development environment are available.
To obtain this information, go to the notebook instance details page.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 74

Figure 5-63 Instance details page

● The key pair is available.
A key pair is automatically downloaded after you create it. Securely store your
key pair. If an existing key pair is lost, create a new one.

Step 1 Install the SSH Tool

Download and install the SSH remote connection tool, for example, PuTTY.

Step 2 Use PuTTYgen to Convert the .pem Key Pair File to a .ppk Key Pair
File

1. Download PuTTYgen and double-click it to run it.
2. Click Load to load the .pem key file created and saved during notebook

instance creation.
3. Click Save private key to save the generated .ppk file. The file name can be

customized, for example, key.ppk.

Figure 5-64 Converting the .pem key pair file to a .ppk key pair file

Step 3 Use SSH to Connect to a Notebook Instance
1. Run PuTTY.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 75

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

2. Click Session and set the following parameters:

a. Host Name (or IP address): address for accessing the in-cloud notebook
instance. Obtain the address on the page providing detailed information
of the target notebook instance .

b. Port: port number for accessing the in-cloud notebook instance. Obtain
the port number on the page providing detailed information of the target
notebook instance, for example, 32701.

c. Connection type: SSH
d. Saved Sessions: task name, which can be clicked for remote connection

when you use PuTTY next time

Figure 5-65 Configuring Session

3. Choose Window > Translation and select UTF-8 from the drop-down list box
in the Remote character set area.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 76

Figure 5-66 Setting the character format

4. Choose Connection > Data and enter ma-user for Auto-login username.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 77

Figure 5-67 Entering a username

5. Choose Connection > SSH > Auth, click Browse, and select the .ppk file
generated in step 2.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 78

6. Click Open. If you are logging in to the instance for the first time, PuTTY
displays a security warning dialog box, asking if you want to accept the
instance security certificate. Click Accept to save the certificate to your local
registry.

Figure 5-68 Asking if you want to accept the instance security certificate

7. Connect to the notebook instance.

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 79

Figure 5-69 Connecting to a notebook instance

ModelArts
Development Environment 5 Local IDE

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 80

6 ModelArts Tool Guide

PyCharm Toolkit

Preparations

PyCharm Toolkit (Latest Version)

FAQs

6.1 PyCharm Toolkit
AI developers use PyCharm tools to develop algorithms or models. Therefore,
ModelArts provides PyCharm Toolkit to help AI developers quickly submit locally
developed code to a training environment on ModelArts. With PyCharm Toolkit,
developers can quickly upload code, submit training jobs, and obtain training logs
for local display so that they can better focus on local code development. For
details about how to download and install PyCharm Toolkit, see Downloading
and Installing PyCharm Toolkit.

Constraints
● Currently, only PyCharm 2019.2 or later is supported, including the

community and professional editions.
● Only PyCharm of the professional edition can be used to access the notebook

development environment.
● You can use a community or professional edition of PyCharm Toolkit to

submit training jobs. PyCharm Toolkit 2.x can be used only to submit training
jobs of the old version, and the latest version of PyCharm Toolkit can be used
only to submit training jobs of the new version.

● PyCharm Toolkit supports PyCharm of the Windows, Linux, or Mac version.

ModelArts
Development Environment 6 ModelArts Tool Guide

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 81

Available Functions

Table 6-1 Toolkit functions of the latest version

Function Description Reference

Remote SSH The notebook development
environment can be accessed
through remote SSH.

Configuring PyCharm
Toolkit to Remotely
Connect to a Notebook
Instance

Model
training

Code developed locally can be
quickly submitted to ModelArts and
a training job of the new version is
automatically created. During the
running of the training job, training
logs can be obtained and displayed
on a local host.

● Submitting a Training
Job (New Version)

● Stopping a Training
Job

● Viewing Training Logs

6.2 Preparations

6.2.1 Downloading and Installing PyCharm Toolkit
Before using PyCharm Toolkit, install and configure it in PyCharm by following the
instructions provided in this section.

Prerequisites
PyCharm community or professional 2019.2 or later has been installed locally.

● Only PyCharm of the professional edition can be used to access the notebook
development environment.

● You can use a community or professional edition of PyCharm Toolkit to
submit training jobs. PyCharm Toolkit 2.x can be used to submit only the old
version of training jobs, and the latest version of PyCharm Toolkit can be used
to submit only the new version of training jobs.

Method 1: Install PyCharm Toolkit in Marketplace
Choose File > Settings > Plugins, search for ModelArts in Marketplace, and click
Install.

ModelArts
Development Environment 6 ModelArts Tool Guide

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 82

Figure 6-1 Installation using Marketplace

NO TE

The version installed in Marketplace is the latest version.

Method 2: Install PyCharm Toolkit Using a Toolkit Package
1. Download Toolkit.

The PyCharm Toolkit package is stored in the public OBS bucket of the target
site. Contact the administrator to obtain it.
PyCharm Toolkit package name: For interconnection with ModelArts Training
Management of the old version, use Pycharm-ToolKit-2.2.1.zip. For
interconnection with ModelArts Training Management of the new version, use
Pycharm-ToolKit-latest.zip. Select a name as required.

Figure 6-2 ModelArts Training Management

2. Installing Toolkit in PyCharm
Install Toolkit in PyCharm by performing the following operations:

a. Start PyCharm on the local PC.
b. On the PyCharm interface, choose File > Settings. The Settings dialog

box is displayed.
c. In the Settings dialog box, click Plugins in the left navigation pane. Click

the setting icon on the right, and choose Install Plugin from Disk. The
dialog box for selecting files is displayed.

ModelArts
Development Environment 6 ModelArts Tool Guide

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 83

Figure 6-3 Selecting a plug-in from the local host

d. In the displayed dialog box, select the Toolkit package from the local
directory and click OK.

e. Click Restart IDE to restart PyCharm. In the displayed dialog box, click
Restart.

Figure 6-4 Restarting PyCharm

f. Open a project after the restart. If the ModelArts tab page is displayed
on the PyCharm toolbar, Toolkit has been installed.

Figure 6-5 Installation successful

6.2.2 Configuring Toolkit Using a YAML File

Configuring PyCharm Toolkit
After PyCharm is restarted, perform the following steps to configure PyCharm
Toolkit:

1. On the PyCharm interface, choose ModelArts > Edit Credential. The Edit
Credential dialog box is displayed.

2. Click Get more region to go to the YAML file download page.
3. Go to the folder of the target region.

Click the link on the web page to view the region information.

ModelArts
Development Environment 6 ModelArts Tool Guide

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 84

https://github.com/huaweicloud/ModelArts-Lab/tree/master/tools/dev-tools/dev-config-template

4. Download the YAML file to the local host.

Click the YAML file to be downloaded. The file details page is displayed. On
the file details page, right-click Raw and choose Save link as from the
shortcut menu to save the YAML file to the local PC.

5. In the Edit Credential dialog box, click Config to import the downloaded
YAML file. After the file is imported, the message Import successful is
displayed, indicating that the region information is configured.

Setting Domain Names and IP Addresses

Toolkit must be used by calling APIs. The API domain names of some regions are
not registered. You need to configure the corresponding IP addresses and API
domain names in the hosts file on the local PC. Generally, the hosts file on the
local PC is stored in C:\Windows\System32\drivers\etc.

6.2.3 Creating Access Keys (AK and SK)
This section describes how to create access keys (AKs and SKs) on the ModelArts
management console. A pair of AK and SK is used to encrypt the signature of a
request, ensuring that the request is secure and integral, and that identities of the
request sender and receiver are correct.

Obtaining an Access Key
1. On the ModelArts management console, hover the cursor over the username

in the upper right corner and choose My Credentials from the drop-down list.

2. On the My Credentials page, choose Access Keys > Create Access Key.

3. In the Create Access Key dialog box that is displayed, enter the verification
code received by SMS or email.

4. Click OK and save the access key file as prompted. The access key file is saved
in the default download folder of the browser. Open the credentials.csv file
to view the AK and SK.

6.2.4 Using Access Keys for Login
To connect Toolkit to ModelArts, use the access keys of the current account for
login authentication.

Prerequisites
● Toolkit has been installed. If it is not installed, install it by referring to

Downloading and Installing PyCharm Toolkit.

● The access keys of the current account have been created, and the
corresponding AK and SK have been obtained. If they are not created, create
them by referring to Creating Access Keys (AK and SK).

● Before using Toolkit, go to the ModelArts console to configure access
authorization. If the global configuration is not complete on the ModelArts
management console, you cannot access and connect to ModelArts after
logging in to Toolkit.

ModelArts
Development Environment 6 ModelArts Tool Guide

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 85

Logging In to ModelArts
1. Open PyCharm with Toolkit installed. Choose ModelArts > Edit Credential

from the menu bar.

Figure 6-6 Edit Credential

2. In the displayed dialog box, select the region where ModelArts is located,
enter the AK and SK, and click OK.
– Region: Select a region from the drop-down list.
– Access Key ID: Enter the AK.
– Secret Access Key: Enter the SK.

3. View the verification result.
In the Event Log area, if information similar to the following is displayed, the
access key has been successfully added:
16:01Validate Credential Success: The credential is valid.

6.3 PyCharm Toolkit (Latest Version)

6.3.1 Training a Model

6.3.1.1 Submitting a Training Job (New Version)

You can use PyCharm Toolkit of the latest version to quickly submit the locally
developed training code to ModelArts for training.

Prerequisites
● A training code project exists in the local PyCharm.
● You have created a bucket and folders in OBS for storing datasets and trained

models. Data used by the training job has been uploaded to OBS.
● The credential has been configured. For details, see Using Access Keys for

Login.
● PyCharm Toolkit of the latest version is available for submitting a training job

of the new version only.

Configuring Training Job Parameters
1. In PyCharm, open the training code project and training boot file, and choose

ModelArts > Training Job > New... on the menu bar.

ModelArts
Development Environment 6 ModelArts Tool Guide

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 86

Figure 6-7 Edit training job configuration

2. In the displayed dialog box, set the training job parameters. For details about
the parameters, see Table 6-2.

Table 6-2 Training job parameters

Parameter Description

Job Name Name of a training job

Job Description Brief description of a training job

Algorithm Souce Source of the training algorithm. The options are
Frequently-used and Custom.
Frequently-used refers to the frequently-used AI
engines supported by ModelArts Training Management.
If the AI engine you use is not in the supported list, you
are advised to create a training job using a custom
image.

AI Engine Select the AI engine and the version used in code. The
supported AI engines are the same as the frequently-
used frameworks supported by training jobs on the
ModelArts management console.

Boot File Path Training boot file. The selected boot file must be a file in
the current PyCharm training project.

Code Directory Training code directory. The system automatically sets
this parameter to the directory where the training boot
file is located. You can change the parameter value to a
directory that is in the current project and contains the
boot file.
If the algorithm source is a custom image and the
training code has been built in the image, this
parameter can be left blank.

Image Path
(optional)

URL of the SWR image

ModelArts
Development Environment 6 ModelArts Tool Guide

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 87

Parameter Description

Boot Command Command for starting a training job, for example,
bash /home/work/run_train.sh python {Python boot
file and parameters}. This parameter is displayed if
Algorithm Source is set to Custom.
If the command does not contain the --data_url or --
train_url parameter, the tool automatically adds the
two parameters to the end of the command when
submitting the training job. The two parameters
correspond to the OBS path for storing training data and
the OBS path for storing training output, respectively.

Data Obs Path OBS path for storing training data, for example, /test-
modelarts2/mnist/dataset-mnist/, in which test-
modelarts2 indicates a bucket name.

Training Obs
Path

OBS path. A directory is automatically created in the
path for storing a trained model and training logs.

Running
Parameters

Running parameters. If you want to add some running
parameters to your code, add them here. Separate
multiple running parameters with semicolons (;), for
example, key1=value1;key2=value2. This parameter
can be left blank.

Specifications Type of resources used for training. Currently, public
resource pools and dedicated resource pools are
supported.
Dedicated resource pool specifications are identified by
Dedicated Resource Pool.

Compute Nodes Number of compute nodes. If this parameter is set to 1,
the system runs in standalone mode. If this parameter is
set to a value greater than 1, the distributed computing
mode is used at the background.

Available/Total
Nodes

When Specifications is set to a dedicated resource pool,
the number of available nodes and the total number of
nodes are displayed. The value of Compute Nodes
cannot exceed the number of available nodes.

ModelArts
Development Environment 6 ModelArts Tool Guide

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 88

Figure 6-8 Configuring training job parameter (public resource pool)

Figure 6-9 Configuring training job parameter (dedicated resource pool)

ModelArts
Development Environment 6 ModelArts Tool Guide

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 89

Figure 6-10 Configuring training job parameter (custom image)

3. After setting the parameters, click Apply and Run. Then, local code is
automatically uploaded to the cloud and training is started. The training job
running status is displayed in the Training Log area in real time. If
information similar to Current training job status: Successful is displayed in
the training log, the training job has been successfully executed.

NO TE

● After you click Apply and Run, the system automatically executes the training job.
To stop the training job, choose ModelArts > Training Job > Stop on the menu
bar.

● If you click Apply, the job is not started directly, and the training job settings are
saved instead. To start the job, click Apply and Run.

Figure 6-11 Training log example

6.3.1.2 Stopping a Training Job

You can stop a running training job.

Stopping a Job

When a training job is running, choose ModelArts > Training Job > Stop on the
PyCharm menu bar to stop the job.

ModelArts
Development Environment 6 ModelArts Tool Guide

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 90

Figure 6-12 Stopping a job

6.3.1.3 Viewing Training Logs

This section describes how to view training job logs.

Viewing Training Logs in OBS

When you submit a training job, the system automatically creates a folder with
the same name as the training job in the configured OBS path to store the model,
logs, and code outputted after training is complete.

For example, when the train-job-01 job is submitted, a folder named train-job-01
is created in the test-modelarts2 bucket. In this folder, three sub-folders (output,
log, and code) are created to store the outputted model, logs, and training code,
respectively. Sub-folders will be created in the output folder based on your
training job version. The following is an example of the folder structure:
test-modelarts2
 |---train-job-01
 |---output
 |---log
 |---code

Viewing Training Logs in Toolkit

In PyCharm, click ModelArts Training Log in the lower right corner of the page.
The training logs are displayed.

Figure 6-13 Viewing Training Logs

6.4 FAQs

ModelArts
Development Environment 6 ModelArts Tool Guide

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 91

6.4.1 What Should I Do If an Error Occurs During ToolKit
Installation?

Issue

The following error message is displayed during ToolKit installation.

Figure 6-14 Error

Solution

This issue occurs because the plug-in version is inconsistent with the PyCharm
version. You need to obtain the plug-in of the same version as the PyCharm
version, that is, version 2019.2 or later.

6.4.2 An Error Occurs When You Edit a Credential in PyCharm
Toolkit

Symptom

When you edit a credential in PyCharm Toolkit, the message "Validate Credential
error" is displayed.

Or

Possible Causes
● Possible cause 1: Information such as the region is incorrectly configured.

● Possible cause 2: The hosts file is not configured or is incorrectly configured.

● Possible cause 3: The network proxy settings are incorrect.

● Possible cause 4: The AK/SK is incorrect.

● Possible cause 5: The computer time is incorrectly set.

ModelArts
Development Environment 6 ModelArts Tool Guide

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 92

Solution
1. Information such as the region is incorrectly configured.

Configure the correct information. For details, see Configuring Toolkit Using a
YAML File.

For example, if the endpoint is incorrect, the authentication fails.

Incorrect example: The endpoint is preceded by https.

Figure 6-15 Configuring PyCharm Toolkit

2. The hosts file is not configured or is incorrectly configured.

Configure the domain names and IP addresses in the hosts file on the local PC.
For details, see Setting Domain Names and IP Addresses.

Network proxy settings are incorrect.

If the network requires proxy settings, check whether the proxy settings are
correct. You can also use the mobile hotspot to test.

Check whether the proxy settings are correct.

ModelArts
Development Environment 6 ModelArts Tool Guide

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 93

Figure 6-16 PyCharm network proxy settings

4. The AK/SK is incorrect.

The obtained AK/SK is incorrect. Obtain the correct AK/SK and try again. For
details, see Creating Access Keys (AK and SK).

If you use a RightCloud account, contact the technical support of the region to
obtain the AK/SK.

5. The computer time is incorrectly set.

Set the computer time to the correct time.

6.4.3 Why Cannot I Start Training?
If code that does not belong to the used project is selected in a boot script,
training cannot be started. The following figure shows error information. You are
advised to add the boot script to the project or open the project where the boot
script is located, and then start the training job.

Figure 6-17 Error

6.4.4 What Should I Do If Error "xxx isn't existed in
train_version" Occurs When a Training Job Is Submitted

Symptom
Error "xxx isn't existed in train_version" occurs when a training job is submitted.
See the following figure.

ModelArts
Development Environment 6 ModelArts Tool Guide

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 94

Figure 6-18 Error "xxx isn't existed in train_version"

Possible Causes

The preceding error occurs because the user logs in to the ModelArts
management console and deletes the training job after submitting the training job
using PyCharm ToolKit.

PyCharm Toolkit records the training job IDs of ModelArts on the cloud. If you
manually delete the job on the ModelArts management console, a message is
displayed indicating that the job with the ID cannot be found when you submit
the job locally.

Solution

If you have deleted a job on the ModelArts management console, you also need
to delete the local configuration from ToolKit. To delete the local configuration,
click Edit Training Configuration, find the job name, click the minus sign in the
upper right corner, and confirm the deletion.

Figure 6-19 Deleting the local configuration

In the displayed confirmation dialog box, confirm the information and click Yes to
delete the configuration. After the deletion, you can create a training job
configuration and submit the training job.

6.4.5 What Should I Do If an Error Occurs When I Submit a
Training Job

When a training job is running, the "Invalid OBS path" error is reported.

Figure 6-20 "Invalid OBS path" error

To locate the fault, perform the following operations:

ModelArts
Development Environment 6 ModelArts Tool Guide

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 95

● If you are using ModelArts for the first time, log in to the ModelArts
management console and complete access authorization configuration. The
agency authorization mode is recommended. After the global configuration is
complete, submit the job again.

● Check whether the configured Data Path in OBS exists and whether data files
exist in the directory. If the directory does not exist, create a directory on OBS
and upload the training data to the directory.

6.4.6 What Should I Do If an Error Occurs During Service
Deployment

Before deploying a model as a service, you need to compile the configuration file
and inference code based on the trained model.

If the confi.json configuration file or the customize_service.py inference code is
missing in the model storage path, an error is displayed, as shown in the following
figure.

Solutions:

Write the configuration file and inference code, and save them to the OBS
directory where the model to be deployed resides. For details, see Introduction to
Model Package Specifications.

Figure 6-21 Error

6.4.7 How Do I View Error Logs of PyCharm ToolKit?
The error logs of PyCharm ToolKit are recorded in the idea.log file of PyCharm.
For example, in the Windows operating system, the path of the idea.log file is
C:\Users\xxx\.IdeaIC2019.2\system\log\idea.log.

Search for modelarts in the log file to view all logs related to PyCharm ToolKit.

ModelArts
Development Environment 6 ModelArts Tool Guide

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 96

https://support.huaweicloud.com/eu/inference-modelarts/inference-modelarts-0055.html
https://support.huaweicloud.com/eu/inference-modelarts/inference-modelarts-0055.html

7 Uploading and Downloading Data in
Notebook

Uploading Files to JupyterLab

Downloading a File from JupyterLab to a Local Path

Uploading Data from a Local IDE to a Notebook Instance

Downloading Files from a Notebook Instance to a Local Directory

7.1 Uploading Files to JupyterLab

7.1.1 Scenarios
Easy and fast file uploading is a common requirement in AI development.

Before the optimization, ModelArts only allowed local files not exceeding 100 MB
to be directly uploaded to a notebook instance. However, the files to be uploaded
are not all stored locally, which may be from an open-source repository of GitHub,
an open-source dataset (https://nodejs.org/dist/v12.4.0/node-v12.4.0-linux-
x64.tar.xz), or OBS. Additionally, ModelArts did not show the file uploading
progress or speed.

ModelArts has been optimized for better file uploading experience. It not only
provides more file upload functions, but also displays more file upload details.

Optimized file uploading:

● Supports local files.
● Supports cloning files from open-source repositories in GitHub.
● Supports OBS files.
● Supports remote files.
● Supports visualized upload progress.

7.1.2 Uploading Files from a Local Path to JupyterLab

ModelArts
Development Environment 7 Uploading and Downloading Data in Notebook

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 97

https://nodejs.org/dist/v12.4.0/node-v12.4.0-linux-x64.tar.xz
https://nodejs.org/dist/v12.4.0/node-v12.4.0-linux-x64.tar.xz

7.1.2.1 Upload Scenarios and Entries
JupyterLab provides multiple methods for uploading files.

Methods for Uploading a File
● For a file that does not exceed 100 MB, directly upload it, and details such as

the file size, upload progress, and upload speed are displayed.
● For a file that exceeds 100 MB but does not exceed 5 GB, upload the file to

OBS (an object bucket or a parallel file system), and then download the file
from OBS to a notebook instance. After the download is complete, the file is
deleted from OBS.

● For a file that exceeds 5 GB, upload it by calling ModelArts SDK or MoXing.
● For a file that shares the same name with an existing file in the current

directory of a notebook instance, overwrite the existing file or cancel the
upload.

● A maximum of 10 files can be uploaded at a time. The other files are in
awaiting upload state. No folders can be uploaded. If a folder is required,
compress it into a package, upload the package to notebook, and decompress
the package in Terminal.
unzip xxx.zip # Directly decompress the package in the path where the package is stored.

For more details, search for the decompression command in mainstream
search engines.

● When multiple files are uploaded in a batch, the total number of files to be
uploaded and the number of files that have been uploaded are displayed at
the bottom of the JupyterLab window.

Prerequisites
You have used JupyterLab to open a running notebook environment.

Upload Entry 1: Dragging a File to the File Browser Window
Drag the file to the blank area on the left of the JupyterLab window and upload it.

Upload Entry 2: Clicking the File Upload Icon and Uploading a File

Click in the navigation bar on the top of the window. In the displayed dialog
box, drag or select a local file and upload it.

ModelArts
Development Environment 7 Uploading and Downloading Data in Notebook

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 98

Figure 7-1 File upload icon

Figure 7-2 File upload page

7.1.2.2 Uploading a Local File Less Than 100 MB to JupyterLab
For a file not exceeding 100 MB, directly upload it to the target notebook instance.
Detailed information, such as the file size, upload progress, and upload speed are
displayed.

Figure 7-3 Uploading a file less than 100 MB

A message is displayed after the file is uploaded.

ModelArts
Development Environment 7 Uploading and Downloading Data in Notebook

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 99

Figure 7-4 Uploaded

7.1.2.3 Uploading a Local File with a Size Ranging from 100 MB to 5 GB to
JupyterLab

For a file that exceeds 100 MB but does not exceed 5 GB, upload the file to OBS
(an object bucket or a parallel file system), and then download the file from OBS
to the target notebook instance. After the download is complete, the file is
automatically deleted from OBS.

For example, in the scenario shown in the following figure, upload the file through
OBS.

Figure 7-5 Uploading a large file through OBS

To upload a large file through OBS, set an OBS path.

ModelArts
Development Environment 7 Uploading and Downloading Data in Notebook

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 100

Figure 7-6 Uploading a file through OBS

NO TE

Set an OBS path for uploading local files to JupyterLab. After the setting, this path is used

by default in follow-up operations. To change the path, click in the lower left corner of
the file upload window.

● Method 1: Enter a valid OBS path in the text box and click OK.

Figure 7-7 Configuring an OBS path

● Method 2: Select an OBS path in OBS File Browser and click OK.

ModelArts
Development Environment 7 Uploading and Downloading Data in Notebook

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 101

Figure 7-8 OBS File Browser

● Method 3: Use the default path.

Figure 7-9 Using the default path to upload a file

Figure 7-10 Setting an OBS path for uploading a local file

ModelArts
Development Environment 7 Uploading and Downloading Data in Notebook

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 102

After the OBS path is set, upload a file.

Figure 7-11 Uploading a file

Decompressing a package

After a large file is uploaded to Notebook JupyterLab as a compressed package,
you can decompress the package in Terminal.

unzip xxx.zip # Directly decompress the package in the path where the package is stored.

For more details, search for the decompression command in mainstream search
engines.

7.1.2.4 Uploading a Local File Larger Than 5 GB to JupyterLab

A file exceeding 5 GB cannot be directly uploaded to JupyterLab.

To upload files exceeding 5 GB, upload them to OBS. Then, call the ModelArts
MoXing or SDK API in the target notebook instance to read and write the files in
OBS.

Figure 7-12 Uploading and downloading large files in a notebook instance

The procedure is as follows:

1. Upload the file from a local path to OBS.

ModelArts
Development Environment 7 Uploading and Downloading Data in Notebook

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 103

2. Download the file from OBS to the notebook instance by calling the
ModelArts SDK or MoXing API.
– Method 1: Call the ModelArts SDK to download a file from OBS.

Example code:
from modelarts.session import Session
session = Session()
session.obs.copy("obs://bucket-name/obs_file.txt","/home/ma-user/work/")

– Method 2: Call the ModelArts MoXing API for reading an OBS file.
import moxing as mox

Download the OBS folder sub_dir_0 from OBS to a notebook instance.
mox.file.copy_parallel('obs://bucket_name/sub_dir_0', '/home/ma-user/work/sub_dir_0')
Download the OBS file obs_file.txt from OBS to a notebook instance.
mox.file.copy('obs://bucket_name/obs_file.txt', '/home/ma-user/work/obs_file.txt')

If a .zip file is downloaded, run the following command on the terminal
to decompress the package:
unzip xxx.zip # Directly decompress the package in the path where the package is stored.

After the code is executed, open the terminal shown in Figure 2 and run
the ls /home/ma-user/work command to view the file downloaded to
the notebook instance. Alternatively, view the downloaded file in the left
navigation pane of Jupyter. If the file is not displayed, refresh the page.

Figure 7-13 Opening the terminal

Figure 7-14 File downloaded to a notebook instance

Error Handling

If you download a file from OBS to your notebook instance and the system
displays error message "Permission denied", perform the following operations for
troubleshooting:

ModelArts
Development Environment 7 Uploading and Downloading Data in Notebook

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 104

● Ensure that the target OBS bucket and notebook instance are in the same
region. If the OBS bucket and notebook instance are in different regions, the
access to OBS is denied.

● Ensure that the notebook account has the permission to read data in the OBS
bucket.

7.1.3 Cloning an Open-Source Repository in GitHub
Files can be cloned from a GitHub open-source repository to JupyterLab.

1. Use JupyterLab to open a running notebook instance.

2. Click in the navigation bar on the top of the JupyterLab window. In the

displayed dialog box, click on the left to go to the page for cloning files
from a GitHub open-source repository.

Figure 7-15 File upload icon

Figure 7-16 Page for cloning files from a GitHub open-source repository

3. Enter a valid address of a GitHub open-source repository, select files from the
displayed files and folders, and click Clone.
GitHub open-source repository address: https://github.com/jupyterlab/
extension-examples

ModelArts
Development Environment 7 Uploading and Downloading Data in Notebook

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 105

Figure 7-17 Entering a valid address of a GitHub open-source repository

4. View the clone process.

Figure 7-18 Process of cloning a repository

5. Complete the clone.

Error Handling
● Failing to clone the repository may be caused by network issues. In this case,

run the git clone https://github.com/jupyterlab/extension-examples.git
command on the terminal page to test the network connectivity.

● If the repository already exists in the current directory of the notebook
instance, the system displays a message indicating that the repository name
already exists. In this case, you can overwrite the existing repository or click

 to cancel the cloning.

7.1.4 Uploading OBS Files to JupyterLab
In JupyterLab, you can download files from OBS to a notebook instance.

1. Use JupyterLab to open a running notebook instance.

2. Click in the navigation bar on the top of the JupyterLab window. In the

displayed window, click on the left to go to the OBS file upload page.

ModelArts
Development Environment 7 Uploading and Downloading Data in Notebook

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 106

Figure 7-19 File upload icon

Figure 7-20 OBS file upload

3. Set an OBS file path in either of the following ways:
– Method 1: Enter a valid OBS file path in the text box and click Upload.

Figure 7-21 Entering a valid OBS file path

NO TE

Enter an OBS file path instead of a folder path. Otherwise, the upload fails.

● Method 2: Open OBS File Browser, select an OBS file path, and click Upload.

ModelArts
Development Environment 7 Uploading and Downloading Data in Notebook

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 107

Figure 7-22 Uploading an OBS File

Error Handling
Files may not be uploaded successfully.

Possible causes:

● The OBS path is set to a folder instead of a file path.
● The file in OBS is encrypted. In this case, go to the OBS console and check

whether the file is encrypted.

● The OBS bucket and notebook instance are not in the same region. In this
case, ensure that the target OBS bucket and notebook instance are in the
same region. If the OBS bucket and notebook instance are in different regions,
the access to OBS is denied.

● The account does not have the permission to access the OBS bucket. In this
case, ensure that the notebook account has the permission to read data in the
OBS bucket.

7.1.5 Uploading Remote Files to JupyterLab
Files can be downloaded through remote file addresses to JupyterLab.

Method: Enter the URL of a remote file in the text box of a browser, and the file is
directly downloaded.

1. Use JupyterLab to open a running notebook instance.

2. Click in the navigation bar on the top of the JupyterLab window. In the

displayed window, click on the left to go to the remote file upload page.

Figure 7-23 File upload icon

ModelArts
Development Environment 7 Uploading and Downloading Data in Notebook

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 108

Figure 7-24 Remote file upload page

3. Enter a valid remote file URL, and the system automatically identifies the file
name. Then, click Upload.

Figure 7-25 Entering a valid remote file URL

Error Handling
Failing to upload the remote file may be caused by network issues. In this case,
enter the URL of the remote file in the text box of a browser to check whether the
file can be downloaded.

7.2 Downloading a File from JupyterLab to a Local
Path

Files created in JupyterLab can be downloaded to a local path. The operations for
downloading a file are the same, regardless of whether the created notebook
instance uses the default or EVS storage.

● If a file is less than or equal to 100 MB, directly download it from JupyterLab.
For details, see Downloading a File Less Than or Equal to 100 MB.

● If a file is larger than 100 MB, use OBS to transfer it to your local path. For
details, see Downloading a File Larger Than 100 MB.

ModelArts
Development Environment 7 Uploading and Downloading Data in Notebook

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 109

Downloading a File Less Than or Equal to 100 MB

In the JupyterLab file list, right-click the file to be downloaded and choose
Download from the shortcut menu. The file is downloaded to your browser's
downloads folder.

Figure 7-26 Downloading a file

Downloading a File Larger Than 100 MB

Use OBS to transfer the file from the target notebook instance to the local path.
To do so, perform the following operations:

1. In the notebook instance, create an IPYNB file larger than 100 MB and use
MoXing to upload it to OBS. Example code is as follows:
import moxing as mox
mox.file.copy('/home/ma-user/work/obs_file.txt', 'obs://bucket_name/obs_file.txt')

/home/ma-user/work/obs_file.txt is the path to the file stored in the
notebook instance. obs://bucket_name/obs_file.txt is the path of the file
uploaded to OBS, where bucket_name is the name of the bucket created in
OBS, and obs_file.txt is the uploaded file.

2. Use OBS or ModelArts SDK to download the file from OBS to the local path.

– Method 1: Use OBS to download the file.

– Download obs_file.txt from OBS to the local path. If a large amount of
data is to be downloaded, use OBS Browser+ to download.

ModelArts
Development Environment 7 Uploading and Downloading Data in Notebook

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 110

– Method 2: Use ModelArts SDK to download the file.

i. Download and install the SDK locally.
ii. Authenticate sessions.
iii. Download the file from OBS to the local path. Example code is as

follows:
from modelarts.session import Session
session=Session(access_key='***',secret_key='***',project_id='***',region_name='***')
session.download_data(bucket_path="/bucket_name/obs_file.txt",path="/home/user/
obs_file.txt")

7.3 Uploading Data from a Local IDE to a Notebook
Instance

If the data is less than or equal to 500 MB, directly copy the data to the local IDE.

If the data is larger than 500 MB, upload the code to OBS and then to the EVS
disk associated with the target notebook instance.

1. Upload data to OBS.
2. Call the mox.file.copy_parallel MoXing API provided by ModelArts in the

terminal of the local IDE to transfer data from OBS to EVS of the notebook
instance.

Figure 7-27 Uploading data to a notebook Instance through OBS

The following shows how to enable terminal in PyCharm.

ModelArts
Development Environment 7 Uploading and Downloading Data in Notebook

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 111

Figure 7-28 Enabling the terminal in PyCharm

The following shows how to use MoXing in the terminal of the local IDE to
download files from OBS to a development environment:

Manually access the development environment.
cat /home/ma-user/README
Select the source environment.
source /home/ma-user/miniconda3/bin/activate MindSpore-python3.7-aarch64
Use MoXing for access.
import moxing as mox
Download a folder from OBS to EVS.
mox.file.copy_parallel('obs://bucket_name/sub_dir_0', '/tmp/sub_dir_0')

7.4 Downloading Files from a Notebook Instance to a
Local Directory

Files created in Notebook can be downloaded to a local path. The operations for
downloading a file are the same, regardless of whether the created notebook
instance uses the default or EVS storage.

Downloading Files from a Notebook Instance to a Local Directory in
PyCharm

In the Project directory of the local IDE, right-click and choose Deployment from
the shortcut menu. Click Download from xxx (notebook instance name) to
download the Notebook2.0 project file to the local PC.

ModelArts
Development Environment 7 Uploading and Downloading Data in Notebook

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 112

Figure 7-29 Downloading files from a notebook instance to a local directory in
PyCharm

ModelArts
Development Environment 7 Uploading and Downloading Data in Notebook

Issue 01 (2023-11-22) Copyright © Huawei Technologies Co., Ltd. 113

	Contents
	1 Introduction to DevEnviron
	2 Application Scenarios
	3 Managing Notebook Instances
	3.1 Creating a Notebook Instance
	3.2 Accessing a Notebook Instance
	3.3 Starting, Stopping, or Deleting a Notebook Instance
	3.4 Changing a Notebook Instance Image
	3.5 Dynamically Expanding EVS Disk Capacity
	3.6 Changing the Flavor of a Notebook Instance
	3.7 Modifying the SSH Configuration for Notebook
	3.8 Viewing All Notebook Instances of an IAM Project

	4 JupyterLab
	4.1 Operation Process in JupyterLab
	4.2 JupyterLab Overview and Common Operations
	4.3 JupyterLab Plug-ins
	4.3.1 Code Parametrization Plug-in

	4.4 Using ModelArts SDK
	4.5 Using the Git Plug-in

	5 Local IDE
	5.1 Operation Process in a Local IDE
	5.2 Local IDE (PyCharm)
	5.2.1 Configuring a Local IDE Accessed Using PyCharm Toolkit
	5.2.2 Configuring a Local IDE Manually Accessed Using PyCharm

	5.3 Local IDE (VS Code)
	5.3.1 Connecting to a Notebook Instance Through VS Code
	5.3.2 Installing VS Code
	5.3.3 Connecting to a Notebook Instance Through VS Code with One Click
	5.3.4 Connecting to a Notebook Instance Through VS Code Toolkit
	5.3.5 Manually Connecting to a Notebook Instance Through VS Code
	5.3.6 Remotely Debugging in VS Code
	5.3.7 Uploading and Downloading a File in VS Code

	5.4 Configuring a Local IDE Accessed Using SSH

	6 ModelArts Tool Guide
	6.1 PyCharm Toolkit
	6.2 Preparations
	6.2.1 Downloading and Installing PyCharm Toolkit
	6.2.2 Configuring Toolkit Using a YAML File
	6.2.3 Creating Access Keys (AK and SK)
	6.2.4 Using Access Keys for Login

	6.3 PyCharm Toolkit (Latest Version)
	6.3.1 Training a Model
	6.3.1.1 Submitting a Training Job (New Version)
	6.3.1.2 Stopping a Training Job
	6.3.1.3 Viewing Training Logs

	6.4 FAQs
	6.4.1 What Should I Do If an Error Occurs During ToolKit Installation?
	6.4.2 An Error Occurs When You Edit a Credential in PyCharm Toolkit
	6.4.3 Why Cannot I Start Training?
	6.4.4 What Should I Do If Error "xxx isn't existed in train_version" Occurs When a Training Job Is Submitted
	6.4.5 What Should I Do If an Error Occurs When I Submit a Training Job
	6.4.6 What Should I Do If an Error Occurs During Service Deployment
	6.4.7 How Do I View Error Logs of PyCharm ToolKit?

	7 Uploading and Downloading Data in Notebook
	7.1 Uploading Files to JupyterLab
	7.1.1 Scenarios
	7.1.2 Uploading Files from a Local Path to JupyterLab
	7.1.2.1 Upload Scenarios and Entries
	7.1.2.2 Uploading a Local File Less Than 100 MB to JupyterLab
	7.1.2.3 Uploading a Local File with a Size Ranging from 100 MB to 5 GB to JupyterLab
	7.1.2.4 Uploading a Local File Larger Than 5 GB to JupyterLab

	7.1.3 Cloning an Open-Source Repository in GitHub
	7.1.4 Uploading OBS Files to JupyterLab
	7.1.5 Uploading Remote Files to JupyterLab

	7.2 Downloading a File from JupyterLab to a Local Path
	7.3 Uploading Data from a Local IDE to a Notebook Instance
	7.4 Downloading Files from a Notebook Instance to a Local Directory

